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Staggered ice-rule vertex model? 

K Y Lin and D L Tang 
Department of Physics, National Tsing Hua University, Hsinchu, Taiwan, Republic of 
China 

Received 21 April 1976 

Abstract. We have studied the staggered ice-rule vertex model on a square lattice which 
allows different vertex weights for the four sublattices of the square lattice. The most 
general Pfaffian solution is given. It is shown that our model may exhibit up to three phase 
transitions. The specific heat diverges with an exponent f either above or below each 
transition temperature. The exact isotherm of an antiferroelectric model in the presence of 
both direct and staggered fields at a particular temperature is obtained. As the fields are 
varied, the system undergoes transitions among states of zero, partial and complete direct 
polarization. 

1. Introduction 

Recently Wu and Lin (1975) considered the staggered ice-rule vertex model on a square 
lattice which allows different vertex weights for the two sublattices. They studied the 
most general Pfaffian solution and found that the system may exhibit up to two phase 
transitions. The specific heat diverges with an exponent f either above or below each 
transition temperature. They also obtained the exact isotherm of an antiferroelectric 
model at a particular temperature in the presence of both direct and staggered fields. As 
the fields are varied, the system undergoes transitions among states of zero, partial and 
complete direct polarization. Lin (1975) obtained similar results for the staggered 
vertex model on a KagomC lattice. 

The purpose of this paper is to generalize the results of Wu and Lin to the staggered 
ice-rule vertex model which allows four different vertex weights for the four sublattices 
of the square lattice. Our model is described in § 2. Symmetry relations are discussed in 
§ 3. When the vertex weights satisfy the free-fermion condition, the model can be 
solved by the Pfaffian method (Montroll 1964). The Pfaffian solution is given in 9 4. 
There are eighteen cases where the free-fermion condition is satisfied at all tempera- 
tures. These cases are examined in § 5. The exact isotherm of an antiferroelectric 
model is discussed in § 6. Our conclusion is given in § 7. 

2. Definition of the model 

Place arrows on the bonds of a square lattice L of N sites subject to the ice rule that there 
are always two arrows pointing away and two arrows pointing into each site. In figure 1, 

7 Supported in part by the National Science Council, Republic of China. 
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Figure 1. The square lattice with four sublattices A, B, C and D. 

4’- “2 

“i 
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; 
Figure 2. The six ice-rule configurations and the associated vertex weights. 

the four sublattices of L are denoted by A, B, C and D. The six configurations allowed 
at each vertex are shown in figure 2, where each vertex is assigned a weight. Let the 
vertex weights be 

{ U )  = {oh 0 2 ,  . . . 7  4 
{or}={o:,  U;, . . . , o;} 
{Urr) = {U; ,  U; ,  . . . ,U : }  

{ U ’ ~ ~ } = { U ? , U ? ,  . . . ,or} 

on A 

on B 

on C 

on D. 

The partition function is 

where the summation is extended to all allowed arrow configurations on L, and 
ni(n:,  ny, nry) is the number of the ith-type sites on A(B, C, D). The aim is to calculate 
the ‘free energy’ 

1 
~ - r m  N 

$ = lim -In 2. (3) 

In a physical model, the vertex weights are interpreted as the Boltzmann factors 

w I = exp( -pe I) 
0’; = exp(-pe‘y) 

U ;  = exp(-pei) 

w:‘ = exp(-pe:’) 
(4) 
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where p =  l / k T ,  k is the Boltzmann constant, Tis the temperature, and ei, el, e:, e’! are 
the vertex energies. 

3. Symmetry relations 

The partition function 2 possesses some symmetry relations which follow from general 
considerations. Translational invariance of the square lattice implies that Z is invariant 
under each of the following transformations: 

Reversing all arrows implies 

Reflectional symmetry in the diagonal directions implies 

Finally there is the weak-graph symmetry (Nagle and Temperley 1968) which is a local 
property of a lattice and is valid even if the weights are site dependent. 

4. Pfailian solution 

A vertex model can be solved by the Pfaffian method if the free-fermion condition is 
satisfied at each vertex (Fan and Wu 1970). In our model, the condition reads 
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Under this condition the partition function is equal to a Pfaffian which is evaluated in 
appendix 1. The result is 

1 "  " 
(1  1) 9 = 2 d e l  d 4  w M 4 ) l  

877 -r -7r 

where 
F = a + b eie + 6' e-" + c e'+ + c'e-'+ - f el(ec+) - f '  ,-'(e++) - g  g' (12) - 

The special case of mi = wi = U'!= 0': has been considered by Fan and Wu (1970). 
The special case of w, = w':I and wi = U ;  was considered by Wu and Lin (1975), in this 
case it is readily verified that F(8,+) can be factorized into two factors: 

F(8, 4 )  = ( A  + B ei" + C e-'" - D eip - E  e-")(A - B  e'* - C e-'" + D eip +E e-") 

with 
(14) 

4=/3-a A = w s w k + w b ~ g  

B = w l w :  c = w2w; D = o ~ w :  E = 0 4 ~ k  

and our solution (12) indeed reduces to the previously known expressions (Wu and Lin 
1975). 

Notice that although there are 20 independent vertex weights to start with, the final 
expression (1 2) contains only nine independent parameters. The free-fermion condi- 
tion (10) implies the following inequalities (see appendix 2): 

;a 3 (bb')'l2 + (c ,c ; ) ' /*  + ( c , c ~ ) ' / *  + ( f f ' ) ' I2+ (gg')''* 

;a z- (blb;)'/ '+ (b2bi)1/2+ (CC')'/'+ (ff')'/'+ (ggr)l/' 

(15) 

(16) 

(17) 

bibz=fg b',b:=f'g' ClCZ =fg' c ; c ;  =f 'g .  (18) 

1 ?a z- b + c + f + g  

It follows from definitions that 

if b = b', c = c', f =f', g = g'. 

The analytic properties of 9 are given by the following theorems?. 

Theorem 1 
If a, b + b', c + c' and f + f '  + g + g' cannot form a polygon, then F ( 8 , d )  # 0 for all f3 and 

t These theorems are proved by K Y Lin in appendix 2 
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4 which implies qb has no singularity and 

+=$1nmax{b1, bz, b:, 6;) 
= 2  In max{cl, c2,  c;, c;}  

= t ~n max{f, f’, g, g’) 

if b +b’>  a + c  + c ’ + f + f ’ + g  + g ’  

if c + c ‘ > a + b + b ’ + f + f ’ + g + g ’  

if f + f ’ + g  + g ‘  > a + b + b’+ c + c ’  

1 

d 4  In[a - 2(bb’)’/’ cos 0 - ~(CC’ ) ’ ’ ~  cos 4 

-z(ff’)’/’ cos(e + 4) - z(gg’)’I2 cos(e - 413 
if a > b + 6’ + c + c’ +f +f’ + g  + g’,  bcf’ = b’c’f and bc’g’ = b’cg. 

Theorem 2 
If a, b + b’, c + c ’ ,  and f+ f ’+  g + g‘ form a polygon, then F ( 6 , d )  = 0 has either one or 
three solutions (ei, 4i) such that -T s s ~ ( i  = 1,2,3J) where (ei, chi) and (-ei, +) 
are considered as the same solution. In the special case of bcf’ = b’c’f, bc’g’ = b‘cg, 
b b ’ a  cc’ = 4 f  = 4gg’,  there is exactly one solution. 

If F ( 8 , 4 )  = 0 has only one solution (el, q51), we can write 

1 I”r l  
if b + f + g > b ’ + f ’ + g ’  4 =G ln/z1(4)1 d4  +3 In max{b1, bz,f, g }  

l n ~ z z ( ~ ) - ’ ~  d++iInmax{b:, bL,f’, g’ }  if b ’ + f ’ + g ’ > b + f + g  (20) 

where z l ,  zz(lzl( a ( ~ 2 1 )  are the roots of 

( b - f e ’ ~ - g e - ’ ~ ) z ’ + ( a + c  el”+C’e-’”)z+b’-f’e-’”-g’e’” = 0; 

when the polygon degenerates into a straight line, namely 

A =  a + b + b’+ c + c’ +f+f’+ g + g ’ -  2 max{a, b + b’, c +c’, f +f’+ g +g’ }  = 0. 

F ( 8 , 4 )  = 0 has only one solution where 

(21) 

e=4=T if a = b + b ’ + c + c ’ + f + f ’ + g + g ’  

e = T , 4 = o  if b + b’ = a + c  + c‘+f+f’+ g +g’  
if c + c ’ = a + b + b ’ + f + f ’ + g + g ’  (22) e = o , + = T  

e = + = o  iff +f’ + g + g’ = a + b + b’ + c + c‘. 

+is non-analytic if and only if the parameters satisfy the critical condition (21). Besides, 
we have 

(23) 

( 2 4 )  

+singular -A’ I ~ ( - A )  A+O- 

.- A3/’ A+O’ otherwise. 

if b =b’, c =c‘, f =f’, g = g ’  

The physical interpretations of these theorems are given in the following two 
sections. 
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5. Exactly soluble models 

In physical models, the vertex weights (1) are interpreted as the Boltzmann factors (4). 
In this section we consider the cases where the free-fermion condition (10) is valid for all 
temperatures so that the models are exactly solved. 

There are four distinct classes of exactly soluble models (others are related to them 
by symmetry relations given in § 3): 

A: w1w2 = w ; w ;  = @;a; = o'i 'wy= 0 0 3 w 4  = a 5 0 6  

0;"; = w;og '$I = yw 1; w ;o ;  = 0;o; 

w'io; = "';lo'; = " I l l w ;  w;w; = w;w; 

w;w; = 0;o; wyw; = 0;"; yw 1; = yo 1; 

&);U; = w;og 0 ; w ;  = 0 ; w ;  

B: " ] w 2 = w ; " ; = " ; ~ ; = w ' ~ w ; = 0  0 3 0 4  = w506 

C: w1w2 = 0;o; = ";U; = """Y = 0 0 3 0 4  = 05w6 

D: w1w2 = " ;U;  = @;U; = 0';"; = 0 w 3 w 4  = 0 5 0 6  

w ' ; ' w ~  - - 
Each class has four or five different cases, overall we have 18 different models to 

w1 = w ;  = w ;  = 07 = O(class D) 

o1 = 0; = U ;  = = O(c1ass C) 

w 1  = w ;  = U ; =  o'; = O(c1ass A) 

w 1  = w ; = w ;  = = O(class B) 

o1 = w ;  = o; =U'! = O(c1ass B) 

w l  = w ;  = w l  = wy = O(c1ass D) 

w1 = w ;  = w ;  = w ;  = O(c1ass D) 

w 1  = w ;  = 0;' = w'; = O(class D) 

w 1  = w = U ;  = w ;  = O(class A) 

(10) w1 = w ;  =a{ = U'$' = O(c1ass C) 

(12) o1 = w ; = 0; = U': = O(c1ass A) 

(13) w1 = w ; = w{  = w';l = O(c1ass C) 
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(14) w1 = w ;  = w ;  = w'? = O(c1ass B) F = a + b  eie+c2eid 

-f ei@++) - g 

(15) w1 = w i = w ;  = = O(c1ass B) F = a + b1 eie + c1 ei' 
+ c i  e-'+ - g f  e i(4-e) 

F = a + b eie +c2 ei' + c ;  e-id (16) w 1  = U ;  = w ;  = w'j, = O(c1ass C) 

g ei(*-+) 

g ' e'(+ - e)  

- g - g' ei(++). 

-f - 

(17) w1 = w i  = w ; = w y =  0 (class C) F = U + C  e'++c;e+ 
-f - 

F = a + b eie + -f ei(e++) (18) w = w i = w 'i = 0;" = O(c1ass A) 

The free energies of these models are discussed in the following subsections, where 
similar models are discussed together. 

5.1. Model 1 

In this model we have $ = $ In a and there is no phase transition. 

5.2. Models 2 and 3 

These models are identical to the model b of Wu and Lin (1975). The system is in a 
frozen state at all temperatures. 

5.3. Models 4-7 

The free energies of these models can all be expressed in the form 

This integral has been evaluated by Hsue et a1 (1975). Models 4 and 5 are identical to 
model 11 of Lin (1975). Models 6 and 7 are similar to model 11 of Lin except that A is 
now the sum of four Boltzmann factors instead of three The system may exhibit up to 
two phase transitions. 

5.4. Model 8 

The free energy is 

This model is similar to the modified KDP model of Wu (197 1) except that here a is the 
sum of four Boltzmann factors instead of one. The critical temperature T, is deter- 
mined by the critical condition 

(28) A(TJ = b + a  +f+g -2 max{a, b, f + g }  = 0.  
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In Wu's model there is only one transition. In our model the system may exhibit up to 
two transitions. To see this, we denote 

4 

a = C exp(-PEi) 

f = exp(-&7) 

b = exp(-pe5) +exp(-PeG) 

g = exp(-Pgs) 

1 = l  

(29) 

where + e2 = €3 + e4 and e5 + €6 = e7 + eg. Equation (28) has two solutions if 
E I + E 2 < E g + E 6  and 

(30) min{El, €2, €3, E41>min{e5, € 6 9  €79 €81. 

5.5. Models 9-1 1 

The free energies can be written in the form 
" 1 "  

4 = 3 da  d p  InJA + B eia + C e-'" + D eis +E ePis 1. (3 1) 
-77 -" 

This integral has been evaluated by Wu and Lin (1975). The system may exhibit up to 
two transitions. 

5.6. Models 12-14 

The free energies can be written in the form 

These models are similar to the model 15 of Lin (1975) except that here A is the sum of 
three (models 12 and 13) Boltzmann factors instead of two and C is the sum of three 
(model 14) factors instead of one. The system has either one or three transitions. 

5.7. Model 15 

The free energy can be rewritten in the form 
" 

dp  lnla +bl  e-'" + c l  e" + c i  eeis -g '  e'"+')( (33) 
,+/,=- 1 "  

8 r 2  I-,, da I-,, 
which is a special case of the general model discussed by Lin (1975). The system may 
exhibit up to two phase transitions. 

5.8. Model 16 

We denote 

A(+) = al  +a2 +c2 e'" +c;  e-i" 

B(+) =bl  +b2-fe'" - g  e-'" 

a l  = 0 5 w & ~ o ~  a2 = 0 6 0 ; o ; w ~  

(34) 
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where a la2  = czc: and blbz = fg .  The free energy is 

where 7r. The system has 
exactly one transition temperature T, determined by the critical condition (21). The 
specific heat diverges with an exponent? a = $ above T, while below T, the system is in a 
frozen state. 

= (B(4,)I has exactly one solution such that O s  

5.9. Model 17 

It follows from theorems 1 and 2 that 

The critical condition 

A( T,) = a + c + c ;  +f + g' - 2 max{a, c + c; ,  f + g'} = 0 

has either one or three solutions. To see this, we denote 

3 

i = l  
c + ck = exp(-pei) 

f + g' = exp(-Pe4) +exp(-pe5) 
9 

a = exp(-pei) 
i =6 

(37) 

where el + eZ = e4 + e5, el + e3 = €6 + e7, et + e3 = € 8  + e9. There are two possiblities: 

(9 min{e6, e7, € 8 ,  e9} = lowest energy (1 transition) 
(39) 

JI = $ ~ n [ a  +(a2-4cc;)1/2]-$ln2 T S  T, 

min{el, e2, e3, e4, e5} = eo = lowest energy( 1 or 3 transitions) (ii) 

T s  Ti (40) 
T ~ ~ T ~ T : > T , '  

JI= -1 zPeo(frozen state) 

= $ ln[a + (a2  - ~ c c ; ) ' / ~ ]  -4 1n2 

where T: may become infinity. 

t We use the standard definitions of critical-point exponents (Stanley 1971). 
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5.10. Model 18 

It follows from theorems 1 and 2 that 

9 = d In max{bl, b2} i f b > a + c + f + g + g ’  

= 4 In max{cl, c2}  if c > a  +b +f+g +g’ 

= 4 In max{f,g, g’} i f f + g + g ’ > a + b + c  

=1  In max{ul, a2} i f a > b + c + f + g + g ‘  

(41) 

where a = al  +a2, al  = w s w ~ w ~ w S  and a2 = w 6 w ; 0 ; 0 z .  The critical condition 
A( T,) = 0 has exactly one solution. We have 

~ = 1 1 n m a x { a l , u 2 , b l , b 2 , ~ 1 , ~ 2 , f , g , g ’ }  T s T,. (42) 

6. Exact isotherm of an antiferroelectric model 

Following Baxter (1970), we use the free-fermion condition (10) to define a tempera- 
ture at which the Pfaffian solution is valid. Since the validity of condition (10) is 
independent of the direct and staggered fields, we have an exact isotherm for a general 
staggered model. 

We denote the staggered field by s, the direct fields in the horizontal and vertical 
directions by h and U such thatt 

The temperature is determined by equation (10): 

exp(-2pemaX) + exp(-2P~min) = 1.  (44) 

Note that we have the equalities bcf’ = b’c’f and bc’g’ = b‘cg. There are four different 
cases (the others are related to them by symmetry): 

(1) E* = E ;  = E ;  = E ) ; )  

(2) E 2  = e ;  = E ;  = €7 
(3) El  = E ;  = € 7  €7 E 2 = E ; = < ; = E I ; I  

(4) E 2  = .; = E ;  = E‘[*  

These models are discussed in the following subsections. 

El  = E ;  = E ;  = E;’ 

E ,  = € 4  = E ;  = €1: 

E = E ; = E” 1 - E T  - 

t See equation (2) of Baxter (1970). 
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6.1. Models 1 and 2 

These models have been discussed in detail by Baxter (1970) and Wu and Lin (1975). 

6.2. Model3 

The free energy is 
2T 

d4ln(2 cosh S +2C+ 2B cos(8 +iH) 

(45) + 2C cos(+ + i  V) - 2 C  cos(8 +iH) cos(4 + i  V)l 

S = 8ps H = 4ph v =  4pv 

B = exp(-4pel) +exp(-4pe2) 

where 

C = 2exp[-2p(e1 +e2)] .  

The staggered and direct polarization P ( S ) ,  P(H) ,  P( V) can be defined as the deriva- 
tives of I) with respect to S, H, and V (Baxter 1970). We define 

RI= cosh S + C 
R3 = C cosh V 

R2=B cosh H 

R4 = C cosh V cosh H. 
(46) 

It follows from theorems 1 and 2 that 
27T 

dd, ln(2 cosh S + 2 C + 2 B  cos 8 + 2 C  cos 4 -2Ccos 8 cos 4) 

if R1>R2+R3+R4 (47) 
where i,b is independent of H and V, 

$ =$lHl-Zp min(el, e*) if Rz>R1+R3+R4 (48) 

lP(H)I = 1 
CF, = WI +fl VI - - P ( E I + 4  if R4>R1+R2+R3 (49) 

IP(H)I = lP( V)l = 1 * = (20) 

IP(H)I = $1 - (I40l/dl 

where 
P( V) = P ( S )  = 0, 

where 
P(S)  = 0, 
if R1, R2, R3, R4 form a polygon 

IP(V)l =%I --( l8oI/dl  

(50) 
where 

and F(Bo, do) = 0 (-T c 80(40) c T).  

6.3. Model4 

The free energy is 

(I =8.rr2 [ de [ d 4  In12 cosh S +2B[1 +cos(8 +iH)+cos(# +iV)] 
2ff 2 n  

0 0 

-2F cos(8 ++ + iH+i V) - 2G cos(8 -4  +iH-i V)( 
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where 

B = F + G  

We define 

F = exp[ -P ( 3 ~  I + 4 1  G = exp[-P(E1+ ~ E Z ) ] .  

f l l =  cosh S + B f lZ=B CoshH 

= F cosh(H+ V) + G cosh(Hi- V). 

fl3 = B cosh V 
(52) 

It follows from theorems 1 and 2 that 

I,/I =Q lo d e  

2 n  2 v  

d+ ln[2 cosh S+2B(1  +cos 6 +cos 4) 
0 

- 2 ~   COS(^ + 4) - 2~  COS(^ - 4) 

( I , = $ ( H / - $ ~  min{3el+e2, ~ E ~ + E J  if f&>fl1+flRg+fl4 (54) 

+=i (V/ -$P  m i n { 3 ~ , + ~ ~ ,  3e2+e1} if f l R g > f l n , + f l Z + f l ,  (55 )  

if f 1 1 > f 1 2 + f 1 3 + f 1 4  (53) 

where P(H)  = P( V) = 0, 

where (P(H)(  = i, P( V) = P ( S )  = 0, 

where IP( V)l = i, P(H)  = P(S)  = 0, 

( ~ , = $ m a x { J ~ +  V I - / ~ ( ~ E ~ + E ~ ) ,  I H -  V ( - P ( ~ E ~ + E ~ ) }  if O4>fl1+!&+lL3 (56) 

where (P(H)(  = lP( V)( = i, P ( S )  = 0, 

where 
* = (20) otherwise (57) 

(P(H)(  = 31 - (l4oIh)l IP(V)( = $r 1 - (leol/dl 
and F(Bo, 40) = 0 (-T s 0,,(40) 6 T). 

7. Conclusion 

We have generalized the results of Wu and Lin (1975) to the staggered ice-rule vertex 
model on a square lattice which allows four different vertex weights for the four 
sublattices. There are eighteen different cases where the vertex weights satisfy the 
free-fermion condition at all temperatures. We have considered these soluble models 
and found that the system may exhibit up to three phase transitions. If there is only one 
transition, then the system is in an ordered or frozen state below T,, and the specific heat 
diverges with a = above T,. If there are two transitions (T: > T:), then the system is in 
an ordered state above TZ, and in an ordered state (the free energy is described by the 
same function for T > TZ and T < Ti)  or frozen state below TE (a = $ at T,' and a' = 4 at e). If there are three transitions (e > TZ > Ti), then the system is frozen below Tr, 
and in an ordered state for 3 T b  T:, while the free energy is described by the same 
function for both T >  T: and T:> T >  Ti (a =; at T:, T: and a'=$ at T:). 

We also obtained the exact isotherm of a general antiferroelectric model at a 
particular temperature in the presence of both direct and staggered fields. As the fields 
are varied, the system undergoes transitions among states of zero, partial and complete 
direct polarization. 
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Finally we compare our results with those of Vaks et a1 (1965)t. In the study of the 
two-dimensional Ising model on the Union Jack lattice, they discovered that their 
model may exhibit up to three phase transitions. Their model has been generalized by 
Sacco and Wu (1975) and is equivalent to a special case of the staggered eight-vertex 
model on a square lattice (Hsue et a1 1975). In the model of Vaks et ul, the specific heat 
diverges logarithmically both above and below each transition temperature and has the 
exponents a =a'= 0. In our model the specific heat has inverse square-root 
singularities either above (a = 4) or below (a' = 1) each transition temperature. 

Appendix 1. Pfaf6an solution 

Expand each site of the square lattice L into a 'city' of four terminals to form a dimer 
lattice LA whose unit cell is shown in figure 3. Following exactly the same procedure as 
Wu and Lin (1975)' we obtain 

where 

A =  

u 3 - 2 4 6  1 0  0 0 0 0 

0 0  ei+ -u5 U4 0 0 0 

0 U; -u; 0 0 0 0 

o o -U; uk o o o ei+ 

0 0 0 0 u ; - u g N  1 0  
0 1 0  0 - U ;  U: 0 0 

o o o o eie 0 

0 0 0 1 0  0 - U ?  U 7  

eiO 

and A* is the hermitian conjugate matrix of A. Equation (A. 1) reduces to equation (1 1) 
in the text after some algebra. 

Appendix 2. General properties of @ 

In this appendix we discuss the analytic properties of the free energy 

t A mistake in this reference was corrected by Sacco and Wu (1975). 
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F i e  3. A unit cell of the dimer lattice LA, 

where 
~ = ~ + b  eiO+ble-iB+c e l + + c ~ e - i + - f e i ( @ + + ) -  f~ e-i(B++)- ei(O-+)- g~ e ~ ( + - e )  

b = b1+62 b '=  b', +b; c =c1+c2 c '=  c'l + c ;  

6162 = f g  6{64 =f'g'  C l C 2  =fg '  c'lc; = f ' g  

and the parameters are defined by equation (13). 

Lemma 1. 

ia  2 (66 ') 1'2 + (c c '1) 1'2 + (c2c ;) ' I 2  + (ff') ' I2 + (gg') 1/2 

$a 2 ( ~ ~ ' ) ~ ' ~ + ( ~ , 6 { ) " + ( 6 ~ b ~ ) ~ ' ~ + C f f , ) ' ' ~ + ( g g ' ) ' ' ~  

;a 3 6 +c + f + g  if 6 = 6' ,  c = c', f =f', g = g'. 

Proof. Let us consider (A.4) first. The free-fermion condition (10) implies 
2 2 

2 2 

2 2 

w1w2 = sin ffw5w6 03w4 = cos ffw506 

w ; w ;  = cos po;w; ,  

#;o;=cos yw;w;: 

w;w; =sin p w ; o i  
w ; o i  = sin yw;wg 

w';'w; = sin2&l&&l @';'@T = cOs2sw~";, 

We define x and y by 

w l o ; o ~ w ~  = x2AS w ~ w ; o ~ o ~ =  y2AC 

where 

S = sin a sin p sin y sin 8 c = cos ff cos p cos y cos s 
2 A = 0 5 0 6 w ; 0 ~ w ~ w ~ 0 ~ 0 ~ .  
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We now rewrite both sides of (A.4) in the form 

;a = $A [ S ( x 2  + x- ’ )  + C(y + y-’)]  + $(o~o&&I’; + W,W;O !U:) 
z A [ (Sx + Cy ’)(Sx -’ + Cy -2)]1’2 + A 

=A[ (S+C)2+SC(~y- ’ -y~ - ’ )2 ]1 /2+A 

The right-hand side is given by 

where 

The inequality (A.4) then follows from ( t  3 0 )  

l-sin(cw + p )  s ~ ~ ( ~ + s ) + [ ( s + c ) ~ + ~ I ’ / ~ - c ( s ’ + c ’ ) ~ + ~ I ~ / ~  

= 1-sin(a +p)sin(y+S)+cos(a  + p )  cos(y+S) 

1 2 1/2 A[(S’+C‘)2+SC(~y- ’ -y~-  ) ] 

S‘ = sin (Y sin p cos y cos S 

+ A  sin(cY + p )  sin(y+S) 

C‘ = cos a cos p sin y sin 6. 

s + c+ S’ + c‘ 
X 

[ ( S  + + p + [ (S ’+  + t ] ’ / 2  27 O. 

Inequalities (AS) and (A.6) follow from similar arguments. 
To calculate i,b we need the following two lemmas (Wu and Lin 1975). 

Lemma 2 .  For complex constants A and B 
7r 

d0 lnlAe” +Bl = 27r In max(IA1, IBI}, J-, 
Lemma 3. For complex constants A, B and C 

Tl 

d e  lnlA eie + B  + C 
= 277 lnlCl if Ifll, 1Z21 3 1 

= 27r ln(A I if 1211, 1221 1 

= 27r ln/Azl/ if (zll z 1 L Iz2( 

where z1 and z2 are the two roots of 

Az2 +Bz + C = 0. 

(A.7) 

Lemma 4. Consider a, 6 ,  b’, c,  c‘,  f, f’, g,  g’  as independent and positive parameters, 
then F ( 0 , 4 )  # 0 foi all 8 and 4 if one of the following conditions is satisfied: 

(1) a > b +b‘+  c + c ’ + f + f ’ + g  + g ’  

( 2 )  b + b ’ > a  + c  + c ’ + f + f ’ + g  + g ’  and a > 2(bb’)’j2 

(3) c + c ’ > a + b + b ’ + f + f ’ + g + g ’  and u > ~ ( c c ’ ) ’ ’ ~  

(4) f + f ’ + g  + g ’  > a + b + b’+ c +c’ and a > 2(ff’)’”+ 2(gg’)’”. 

Proof. In case (1) we have 
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which implies F # 0. In case ( 2 )  we have 

(Jb - d l ~ ’ ) ~ >  E’ + c +c’+ f +f’+ g +g’ 

where E’ = a - 2 ( l ~ b ’ ) ’ / ~ .  If F ( 8 , 4 )  = 0. then 
-b eie-b‘e-i’-2(bb’)1/2~ - ( J b  eiel2+ Jb’e- i8/2 ) 2 

g’ (A.9) - - E z + c  ei+ + c l  e-i+ -fei(e+d)_fre-i(e++)-g eW-+)- 

Equation (A.9) is impossible to satisfy for any 8 and 

[left-hand side of (A.9)[2 (Jb -4b’)’ 
since 

> E’ + c +c’+  f +f’+g +g’* ]right-hand side of (A.9)(. 

Case (3) can be treated in the same way. In case (4),  we define 

b = ~:+2( fg ) ’ / ’  a = E’ + 2 ( f f ’ )  ‘I2+ 2(gg’) ‘I2 

b ’ =  E:+2(f I g )  I 1/2 C = & : + 2 ( f g y 2  C’=&:+2(f’g)1/2 
7s = ( g g y 2  = J f  ,i(e++)/2 = (ff’)1/2 = J g  ei(e-+)/2 

we have 

f +f’+ g + g’ > 2[ ( f fy2+ (gg’)l/* + (fg)’l2 + ( f g ’ ) ’ / 2  + ( fg’ )1 /2  + (f’g)’/’] 

+ E 2  + E :  + E ; +  E : +  E:  (A. 10) 

which implies 

(J f  + Jf + J g  - J g ’ > ( J f + J r  - J g  + J g ’ > ( J f -  Jy + J g  + J g ‘ ) < J f - J r  - J g  - Jg ’ )  > 0. 

(A. 11) 

Inequality (A. 11) implies that J f ,  J f ’ ,  J g ,  Jg’ cannot form a polygon. Without loss of 
generality we assume 

Jf > J f ’ + J g + J g ’ .  

If F ( 8 , 4 )  = 0, then 

(Jf - Jf - J g  - Jg i )2  6 [(a - p - 7 - = p(e ,  4) -(a - p - 7 - 
= [4(py  + y~ +pa) + E ~ +  E :  eie + E :  e-ie + E :  ei+ + E :  e++I 

6 4( f ’g )1 /2  + 4(gg’)’/’+ 4 ( f g ’ ) 1 / 2  + E + E ?  + E :  + E ;  + E:  

which contradicts (A.lO). 

Theorem 1 
If a, b + b’, c + c‘ ,  and f + f  + g + g’ cannot form a polygon, then F(8 ,+)  # 0 for all 8 and 
+ which implies that + has no singularity and 

9 = f In max{bl, bl ,  b : ,  b:} (A.12) 

= f  In maxicl, c2, c:, ch} (A.13) 

= 5 In madf, f ,  g, g’} (A.14) 

_-  if Q > b  +b’+c  +c’+f+f’+g+g’ (A.15) 

if b+b’>a+c+c‘+f+f’+g+g’  

if c + c’ > a + b + b’+ f + f ’  + g + g’ 

iff  + f + g + g ‘ > a  + b  + b ’ + c  +c’ 

- 
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where (z1(q5)1>(z2(4)1 and zl, z2 are the rootsof A z 2 + B z 2 + C = 0  with 
A = b - f  ei”-ge-’+ = a  +c ei+ +c’ e-i+ 
C = b’ -f’ e-i+ - g’ ei+ 

Proof. To evaluate I+$ we use lemma 3 to carry out the 8 integration. Since 

F(8 ,+)  =A(+) eie + B ( + ) +  C(+)  e-ie # 0 

for all e and 4, it is clear that )z1,2(q5)1 # 1 for all 4. Let us first consider (A.12). We have 

b + b’> 2(bb’)1’2+ f +f’+g + g ’ a  2(bb’)’12+ 2(b~b2)1’2+2(b:bk)”2. (A. 16) 

It follows from (A. 16) that 

(Jb,+Jb,+Jb;-Jb;)(Jb,  +Jb2-Jb:+Jb;)(Jbl-Jbz+Jb‘, +Jb;) 

x(Jb1- JbZ-Jb: - Jb;) 

> 4[(blb2)’” + (b; b;) 1/2][(Jb1 -Jb2)2 + ( J b  - Jb;)2] 3 0. 

Therefore d b l ,  dbz,  db i ,  Jb;  do not form a polygon. Without loss of generality we 
assume J b ,  >Jb2+Jb: +Jb;. It is straightforward to show that 

b - f - g  > b’-f’-g’ 

I+$=- J d41n(A(+)(=$Inbl .  

121,2(+)l< 1. 

It follows from lemma 3 that 

1 “  
4T -= 

The cases (A.13) and (A.14) can be treated in the same way. The case (A.15) follows 
from the fact that (zl(+)( > 1 > ( z2(+)( .  

Theorem 2 

I+$=sJo dojo d+In(a-beie-b’e-ie 
2“ 2?r 

-2 COS +[(cc’)1/2+(fg)1/2 eie +(fg’)”’ e-”]~ (A.17) 

if c/c+‘ = g’/f’ = f / g  and a > b + b’+c +e’+ f +f’+g +g’ 

8T 0 

1 2= 2“ =*I d 8 L  d+ In[a-2(bb’)1/2cos ~ - ~ ( c c ’ ) ’ ~ ~ c o s ~ - ~ ( ~ ~ ~ ) ~ ’ ~ c o s ( ~ + ~ )  

-2(gg‘)’I2 -443 
if bcf’ = b’c‘f, bc’g’ = b’cg and a > b + b’+c +c‘+  f +f’+g +g’. 

Proof. From theorem 1 we have 

I+$=-Rej 1 d+ Inx,(+) 
4T -= 

(A.18) 

where (xl( 3(x21 and x1,2 satisfy x2+Bx + A C =  0. To show (A.17) we define 

c/c’ = exp(2h) cc’ = CO f g  = d 2  f ’g‘  = d” y = 2 cosh@ + i+) 2 
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and write 

f(e’”) = B 2  - 4 A C  = (ci-4dd‘)y2+ 2(aco+ 2bd’+ 2b’d)y +a2  -4bb. 

It can be shown that all four roots of f(e’”) lie on the negative real axis. The inequality 
a > b + b‘+c +c‘+f+f’+g +g’ ensures that two roots lie outside the unit circle and 
two roots lie inside such that on the real axis these two pairs are separated by the interval 
(-e-h, -1). We then move the contour of the integration from -7r + 7r to -7r+ih + 
7r +ih and obtain (A.17). Using identical argument and defining c /c ’=  exp(2h), 
b/b’= exp(2v), it can be shown that in the second case we can move the contour of the 
4(8) integration from -T+T to -.rr+ih(u)+.rr+ih(u) and obtain (A.18). 

Theorem 3 
If a, b + b’, c + c‘, and f + f ’ + g  + g‘ form a polygon, then F(8,+) = 0 has either one or 
three solutions (ei, di) such that -7r s s 7r(i = 1,2 ,3)  where (ei, 4i) and (-ei, -&) 
are considered as the same solution. In the following special case 

bcf’= b’c’f bc’g’ = b’cg bb’3cc’=4ff’=4ggr 

there exists exactly one solution. When the polygon degenerates into a straight line, 
F ( 8 , 4 )  = 0 if and only if 

e = 4 = r  if a =b+b’+c+c’+f+f’+g+g’ 

e=7r,4=o if b + b ’ = a + c + c ’ + f + f ’  + g + g’ 

e = o , + = r  if c + c’ = a + b + b’+f+f’ + g  +g‘ 

e = 4 = o  i f f  +f’+ g +g’ = a + b +b‘+c + c’. 

Proof. F ( 8 , 4 )  = 0 implies 

a + (b + b ’) cos 8 + (C + c ’) cos 4 - (f + f’) cos( 8 + 4) - ( g  + g’) cos( 8 - 4) = 0 

(b -b’) sin 8 +(c  -c ’ )  sin 4 -(f-f’) sin(8 ++)-(g-g’)  sin(8-4) = 0. 
After some algebra we find 

where 

A = 16[ (~f’ - c ’ f ) ( ~ ’ g ’  - cg) - ( f g  -f‘g’)’] 

(A.19) 

 COS 4) = A ~ 0 ~ ~ 4  + B ~ 0 ~ ~ 4  + c  COS^^ + D COS 4 + E  = o (A.20) 

B = 8a(c +c’)(fg+f’g’)- 16a(cf’g+c’fg’)+ 16(fg - f ’g’ )[b( f+g)-b’ ( f ’+g’)]  

c = 4[bc - b’c’ - a ( g  - g’)][bc’ - b’c - a (f - f ’ ) ]  + 4[c(f ’  + g )  - c’(f + g’)]’ - 4[b(f  + g )  

-b’(f’ + g’)12+4(cf’- cg + c’g’-c’f)[a(b - b’) - (c - c’ ) ( f+f ’ -g  -g’)] 

-8(fg -f’g’)[b2- 

+ 8 ( ~ f ’ - ~ ’ f ) ( b ~  -b’c’)+S(cg-c’g‘)(b’c - b ~ ‘ )  

(f- g y - -  (f’ - g ’ y ]  
f(1) = A  + B  + C+D + E  

= (f+ g -7-g’ -  b + b’)’[(a + c + c’)’- (b  + b’ - f - f  + g  + g’)’] 

f ( -1)  = A -B + C-D + E  

= ( f + g  - f  -g’+b -b ’y [ (a  - c  -c ’ )2-  (b  +b’+f+f’+g +g‘)2]. 
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If a ,  b + b’,  c + c’, f+f’+ g +g’  form a polygon, we have 

f( 1) 3 0 2 f(- 1) 

which implies that f(cos 4) = 0 has either one or three solutions. When the polygon 
degenerates into a straight line, F ( 8 , d )  = 0 has only one solution. For example, if 
a = b + b ’ + c + c ’ + f + f ’ + g + g ’ ,  then we have 
a = -b ei@ - b’ - ei4 - c l  e-i4 +f +f’ e-i(e+4) + e i(0-4) + g t  ei(4-e) 

= b + b ’ +  c + c ’ + f + f ’ + g  +g’  

which implies eie = eU = -1. Other cases can be proved similarly. In the special case of 
(bcf’ = b’c’f, bc’g’ = b’cg, b b ‘ 3  cc’ = 4ff  = 4gg’), we denote 

c = co e” c‘ = co e-” b = bo e-’ b’=  bo e’ 
f =fo e”-’ f’ =fo e’-” g = fo e-”-” g’ =fo e‘+’. 

Without loss of generality we assume U z= U B 0. It is straightforward to show that 
f ’ ( x )  < 0 for ( x  1 S 1 if either bo 3 co = 2f0 or co bo = 2f0. Therefore f ( x )  is a monotonic 
function of x if Ix 1 s 1 and f(cos 8 )  has exactly one solution. 

Theorem 4 
If a ,  b + b‘, c + c‘, and f + f’ + g + g’ form a polygon and F(8, (6) has only one solution, we 
have 

II, =- J lnlzl(4)l d 4  +$In max{b1, bZ,f, g }  
1 1+,1 

2 a  0 

1 1+*1 

2a 0 

if b +f + g  > b’ +f’ +g’  

if b ’ + f ’ + g ’ > b  + f + g  
(A.21) 

=- J lnlzz(4)-11 d 4  +$Inmax(bi, b:,f’, g’} 

where z1.2 are defined in theorem 1. 

Proof. It is simple to show that Izl( > 1 >(z21 at 4 = O  and Iz1,21<(>)1 at 4 = a if 
b + f + g > ( < )  b ’+f ’+g’ .  Therefore we have 

1 ~ 1 1 > ~ > l ~ * l  if Oc4<J+lI 
lz1,2l <(>)I if 1#11 < 4 G 7r and b +f + g > (<)b’+f’ + g’ 

since 1z1,2(4)( # 1 if 4 # *+l. It follows from lemma 3 that 

1 1411 1 ”  

2.rr 0 2 r  1+11 

=- J 1nJC/z21 d 4  +- J In(C( d+ if b ’ + f ’ + g ’ >  b + f + g  

which reduces to (A.21). 
Note that near the critical point where the polygon almost degenerates into a 

straight line, F ( 8 , 4 )  = 0 has only one solution and theorem 4 applies. Equation (A.21) 
implies that the singular part of II, behaves as A3” as A -* O+ where A is gven by equation 
(21). 
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